垂線のひき方で…


▼ページ最下部
001 2010/12/09(木) 23:47:42 ID:QU0jgFas1.
直線A上ではない点Bから直線Aへ垂線をひけ、という問題です。

一般的には①のように、点Bをコンパスの軸として直線Aに2交点をとってから…ですが、
そうではない方法で、②の様に、任意の点PとQを直線A上にとり、
点Bを通るように点Pと点Qを中心とした半円をそれぞれ描きます。
点Bと対象の位置にある交点を求め、その点とBを結んで③の様にしたとき、
直線A⊥BCとなります。

この場合、何で直線A⊥BCになるか、中学生の学習範囲で証明できますか。

返信する

※省略されてます すべて表示...
009 2011/02/09(水) 18:22:37 ID:eRfHut8wAg
削除(by投稿者)

返信する

010 2011/02/10(木) 12:36:49 ID:ejb/2XZHnQ
>>8
点Cと点Pを書き間違えました
指摘どうもです

追加の一行は必要ないと思います

あえて書くとしたら

∴△BQC≡△DQC
∴∠BCQ=∠DCQ
∠BCD=180°より
∴∠BCQ=∠DCQ=90°
以上より
直線A⊥BC

返信する

011 2011/02/11(金) 12:29:05 ID:d9HiC1uWM2
考えてみると当り前というか馬鹿々しくも難しい。

ここに底辺を同じくするa,b二つの二等辺三角形がある。
このとき互いの頂点どうしを結んだ線PQが、
それぞれにとって底辺と直角に交わる二等分線であることを証明せよ。
尚、線PQが底辺BDと交わる仮想点をCとする。

“正三角形の内角が全て等しいことを証明せよ”みたいな。

返信する

012 2011/02/11(金) 18:52:30 ID:tIY7iNuGzg
質問は「PQはBDを垂直に2等分することを証明せよ」って言い方がよく使われます。

(証明)
△BPQと△DPQにおいて
仮定よりPB=PD,QB=QD
PQは共通(で等しい)
3辺がそれぞれ等しいので
△BPQ≡△DPQ
よって∠BPQ(BPC)=∠DPQ(DPC)
二等辺三角形PBDの頂角BPDを2等分しているので
「二等辺三角形の頂角の二等分線の定理」より
PQ(PC)は底辺BDを垂直に2等分する
(以上)

(参考に)
定理名「二等辺三角形の頂角の二等分線の定理」は
本文が「二等辺三角形の頂角の二等分線は底辺を垂直に2等分する」です。
ってタイトルが本文の主語と全く同じ・・・



(「△ABCにおいて、AB=BC=CA ならば ∠A=∠B=∠Cである」ことの証明)

仮定よりAB=BC
二等辺三角形の2つの底角は等しいので
∠A=∠C
またBC=CAより同様にして∠B=∠A
よって、∠A=∠B=∠C

返信する

013 2011/02/11(金) 19:06:28 ID:IvQ9ioOx0o
>>12
素晴しいっ!
>1の問題は突き詰めればこんな笑える問題になるね、ってつもりだったんだが
定理を使ってきちんと証明できるんだね。しかも冗談で書いた正三角形まで…。
数学って何事にも大真面目で面白い。

返信する

014 2012/03/22(木) 00:36:50 ID:w0i7G44.GU
削除(by投稿者)

返信する

015 2012/03/22(木) 00:36:57 ID:w0i7G44.GU
削除(by投稿者)

返信する

016 2012/08/21(火) 19:51:28 ID:4Zd01Vduzs

▲ページ最上部

ログサイズ:9 KB 有効レス数:16 削除レス数:1





数学掲示板に戻る 全部 前100 次100 最新50

スレッドタイトル:垂線のひき方で…

レス投稿

未ログイン (ログイン

↑画像ファイル(jpg,gif,png)